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Spin-1 fields are constructed automatically using the regular representation of 
the three-dimensional complex orthogonal group and the group's isomorphism 
with the Lorentz group. The fields and potentials are examined as one lets their 
mass go to zero. Going to masslessness after the differentiation of potentials 
results in a consistent formulation of the fields. The behavior of the massive and 
massless potentials under rotations in the particle frame is examined. The loss of 
global degrees of freedom as one goes from one to the other is made up by the 
appearance of gradient terms. 

1. INTRODUCTION 

Biritz' comprehensive work on massive particle equations (Biritz, 1979) 
and Weinberg's Brandeis lectures on the theory of massless particles (Wein- 
berg, 1964) strongly influenced this author's formal approach to the age-old 
problem of the transition from massive to massless particle fields. Of the 
cases so far considered in some detail, spin-l /2 and spin-l, the latter is 
briefly described here, being the more complex of the two since it depends 
not only on the fields proper but also on the potentials. Thus, gauge 
transformations come up as one goes to the limit of masslessness or, more to 
the point, as one reaches helicity. 

2. NOMENCLATURE 

The generators J~(v,/~ = 0-3) of L h, the homogeneous Lorentz group, 
are divided into the two sets Jk  =- Jim (k ,  l, m = 1--3, used cyclically) and 
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Kk -- Jko. The vectors 

J + i K  J - i K  
A - ~ and B -- ~ (1) 

then independently from one another satisfy the angular momentum com- 
mutation relations. The matrix representations of L h of interest here are 
denoted by (A, B), A and B being the maximum values of the diagonal A 3 
and B3, respectively. The massive fields q'A and ~ks are associated with (1,0) 
and (0,1), respectively. So are the fields with helicity, q~_ and q~+. The 
massive potential �9 is associated with (1 /2 ,1 /2) .  The mass!ess potential can 
be separated into the helicity carrying parts gP_ and ep+. Owing to the 
occurrence of the three mentioned representations we have boost matrices 
called B A, BB, and B. It suffices to have one type of rotation matrix, the 
three-dimensional FI. Finally, the unitary operators representing elements of 
the inhomogeneous Lorentz group, /~,  are called U. 

3. THE MASSIVE FIELDS 

Under infinitesimal transformations the massive fields behave as fol- 
lows: 

pk +A.n = (1 + ie,,,Jm)ktqJA.B (2a) 

and 

,k = (2b) +A,B (1 + e,,,d,,,)/'tq~, B 

equations (2a) referring to rotations, equations (2b) to Lorentz transforma- 
tions; the e k are real. 

In a Cartesian system the representations are (complex) orthogonal and 
therefore the vertical position of the roman transformation indices becomes 
irrelevant. Also, since we are dealing with the regular representations of A 
and B, the q~k = q'Ak transform like the A k and the ~k~ = ~kBk like the B k. 
Consequently, equations (1) allow us to define antisymmetric tensors in 
space-time: 

iffka and F~ ~' = (3) 

The overall minus sign in the first set of identities as compared to the 
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relations between ,J~ and A k turns out to be convenient because of the form 
the FA. n assume in the massless limit. 

Our fields may be written in the following form: 

~A. B ( x ) =  (2rr)3/2 f ( / i R - x ( O ' ~ ) B A ,  B(a)  

_ 1-/a+ (p) a - ( p )  * 1 
e i p x -  a~ e - i p x  J Lk "- (p) a+ (P) 

(4) 

P is a matrix transforming spherical to Cartesian Fourier coefficients. The 
boosts 

cosh a + i sinh a ! ) 
BA, B = T- isinha cosh a 

0 0 

relate the Fourier coefficients to the rest frame and [q-1 projects the 
resulting components onto the specific coordinate system. The relative 
minus sign and the choice of one set of Fourier coefficients in terms of the 
other leads to a real field for F =  ( F  A + FB)/2.  

The reduction of an infinite component base of / i to a finite one of L h 
is possible if the complete set of spin projections, here denoted by super- 
scripts on a(p), is contained in the r~presentation of L h. For spin-1 and the 
representations (1, 0) and (0,1) that holds practically trivially. 

The contributions to the integrand in equation (4) from a particular 
momentum, say, along z, are 

and 

+ e ( P ) + e •  ei~p~-e') =fJ.B23 

�9 - e ( p ) - e •  B (5) 

-T- a~ ei<p~-Et) = f,~,B,12 f,~,~ok = -T- if,~, B "  i,,, 

For the sake of clarity, we have only written the positive frequency parts. As 
a ~ oo (m --* 0), fA approaches negative helicity and fB positive; those are 
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exactly the helicities of the massless fields: the Fourier integral of the 
massless field qJ_(q~+) is given by the same expression as for the massive 
field, equation (4), but without a § a~ -, a~ Furthermore, e ~ then equals 
P/Pr, Pr being a reference momentum. 

4. THE MASSIVE POTENTIAL 

We write the massive 4-potential, in analogy to equation (4), as the 
integral 

,(x)= 1_~__ d~p (R-~(o,,p)Ol) (2~) ~: f B(a) (2E)  1/2 0 

_ [-/a+ (p) 
• ~-2 P,/[ a~ 

L ~"- (P) 

: ] e ipx -t- / a~ e-ipx (6) 

/ a  + (p) 

where B is the boost along z in space-time, and P4 is the matrix P in 
equation (4) augmented by a fourth row of zeros. Clearly, q~ satisfies the 
Lorentz condition. 

From equation (6) we extract the particular potential 

1 + r = ~-(~ (p)+ 

i a+ ,2 = ~_[ (p )_  

q~3= P~ 
m 

d? ~ = P ao(p)ei(p~-EO 
m 

a-  (p))e i(pz-E') 

a -  (p)] e i ( p z - E t )  (7) 

As the mass approaches zero, the transverse components vanish relative to 
the longitudinal ones: only the two zero helicities are contained in (1 /2 ,1 /2) .  

If we now take the curl, we find the following: 

1 (0 ."  0~ / 1 
m Ox, Ox.]=~ (/~+f~)'~ (8) 
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The longitudinal term with indices zero and three vanishes relative to the 
others as we let the mass vanish. The other longitudinal term, indices one 
and two, is zero in any case. 

From equations (5) we gather, e.g., 

1 1 -~ (fA + fB) z3 = "~- sinha [ a+ (P ) -  a -  (p)] e i ( p z - F ' ' )  (9a) 

1 e a ~--~--f[a+(p)-a-(p)]e ip(~-t) (9b) 

Equation (8) itself follows only after identifying s inha with p/m, i.e., upon 
calling on k~. Equation (8) can, of course, be immediately generalized to 
relate �9 and F. 

5. THE MASSLESS FIELDS AND POTENTIALS 

The limiting expression on the fight of equation (9b) is, as expected, 
found in (F+ + F ) / 2  where, like in equations (3), the tensors are given in 
terms of the complex vectors by 

- ~bk- { ~bk+ (10) FY' -= itpk - and F+ ~' -- i~ hI'+ 

and the vectors are expressed by 

1 d3p R_IBA, 
(2~r)3/2 f (2E)1/2 o 

x P 0 - "1 e t px  (11a) 

or 

1 d3p e~ek a+ ' 
q'~'+(x)=(27r)3/2f (2E)1/2 ,+ (p)[a-'+(p)e ipx- - (p)*e -~,x] 

( l l b )  
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The last integral contains the polarization vectors (Weinberg, 1964) 

e~ (p) = R - / k  et el _ 1 .+ / -,+; -.+ ~ , e 2 = -T- i e 3 = 0 
- - ' +  ~ * -- + 

The massless potentials may conveniently be written in the form 

,I,_.+ (x) = - -  1 d3p ~)B 
f ( a - '  (2E)  1/2 0 

1 
a + (p)+ / . 

0 ) e ~p.x 
a -  (p)_  

' a -  (p) + 

+ 0 
a + (p)_ *1 e tpx  (12) 

Their curls and the fields are related by 

1 Oq~_, + 0~_. + 
Pr OX,, OX~ 

= F~t ~ - , +  (13) 

The separability of the massless curl equations clearly allows the choices 

The relation 

r = dp+ + r  and dp = i ( , + -  dp_) (14) 

1 ( 0 ~  ~ 0 0 " )  (15)  
2F'~' = ~ Ox, dx~, 

then makes the symmetry under the exchange 

Fkl __, F ore, F ok ~ - Ft,, (16) 

quite apparent; see also equations (5) and (7). We are adhering to our 
convention [see equation (8)] and define for the massless case F = (F+ + 
F_)/2. 

A unified treatment of the massive and massless curl relations, [equa- 
tions (8) and (13)], is obtained by writing for a particular p, p = [Pl 

e" ( Oep ~ 0r (17) 

w i t h f  - ( l /2)(fA + fB) or -= ( l / 2 ) ( f +  + f+), and r - r  + r in the mass- 
less case. Any massless limit must be taken after the differentiation. 
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6. LORENTZ INVARIANCE AND GAUGE 
TRANSFORMATIONS 

While the absence of longitudinal components from the massless poten- 
tials does not bother us as far as the fields are concerned-- they do not 
appear there-- i t  might be worrisome in potential-dependent terms like 
interactions. 

Weinberg (1964) has shown that the apparent lack of Lorentz invari- 
ance actually is beneficial rather than a death blow to the theory. Thus, 
transforming to a different observer results in a Lorentz transformation of 
the massless (transverse) potential and a gauge transformation. Here we 
should like to view this state of affairs in the context of the massiveness to 
masslessness transition. 

The product of rotation and boost constitutes a set of wave functions 
for a particular momentum. Let us call the matrix element of this set u",(p). 
Since we are already in Cartesian coordinates- -P has operated on the 
vector aS(p) (s = + ,  0, - ) - -  the wave functions are generally not orthogonal 
for different a. The covariance of equation (6) is made possible by the fact 
that the spin implicit in the coefficients aS(p) is also contained in the 
representation (1 /2 ,1 /2 ) .  

We have the relation 

[ E(p)]l/2~J' U~'k(p)ak(p) = [ E(kp) l l /2u"k(hp)U- l (  ~,)ak(~,p)U(k ) 

(18) 

Of course, IPl 2 - E 2 = - m 2. 
The U(~) are the unitary transformation operators forced upon us by 

the use of the a(p) as free particle destruction operators. 
Let us consider an arbitrary transformation ~ in space-time. Equation 

(18) becomes 

X" u,k(p) = u " t ( k p ) R ~ ( k , p )  (19) 

Since R(X, p)  is given by 

R*,(X,p)  = 

and 

u(p) = H(p) 
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(remember, owing to our choice of coordinates U"o(0) = 3"o) equation (19) is 
manifestly satisfied. The matrix H is the general, helicity-preserving boost 
from rest to momentum p. 

Equation (19) explicitly guarantees the covariance of the potential r  
as given by equation (6). 

With ~, = HRH-~ the transformation A expresses the observer's view of 
a rotation of the massive particle's fixed axes, and with 

H = B  

the momentum p is directed along the z axis. 
Now let us similarly consider the massless potential. To emphasize the 

essential points we shall immediately use 

2~ = BRB-1 and p =/cp (i.e., p along z ) (20) 

Furthermore, let us first look at a (negative) rotation about the y axis: 

~, = B ( a ) R ( -  e ) B - ' ( a )  (21) 

where a and 0 are the usual parameters; thus, tanha  = v. If now, as before 
in the massive case, the rotation occurs in the particle's frame, the right side 
of equation (21) goes over into the matrix 

1 0 Y - Y  

0 1 0 0 
y2 y2 

- Y  0 1 - - -  
2 2 

y2 y2 
- r  0 1 + 7  

2 2 

(22) 

Where Y=  lim0 ~ o.~_ooOe ~. 
The generator of this ~ is clearly K 1 - ,/2 - L~; see equation (1). The 

same generator can also be obtained by first sandwiching an infinitesimal 
rotation between finite boosts, yielding the matrix 

writing this as 

= 

1 0 ecosha - e s i n h a  
0 1 0 0 

- ecosha 0 1 0 
- e s i n h a  0 0 1 

= 1 + i(e sinh a K  1 - e cosh a J  2 ) 

(23) 
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and then letting the coefficients of K 1 and -/2 approach one another while 
remaining infinitesimal. The finite transformation subsequently generated 
by the usual exponentiation is a series that terminates after the second 
nontrivial term. It is identical to equation (22). 

Rotating about the particle fixed x axis results in the observer frame 
generator K 2 + J1 = L2; rotations about z clearly do not depend on any 
relative motion along z. 

Thus, infinitesimal rotations in the particle's frame perpendicular to its 
velocity appear finite to the observer. The relevant body fixed generating 
transformations are second-order infinitesimals. 

The ring made of L1, L 2, and ,/3 generates the well-known Euclidian 
group in two dimensions, E(2), here relevant to massless particle fields, and 
resulting from a limiting process applied to the three-dimensional rotation 
group, which is relevant to massive particles, in particular particles at rest. 

We are now in a position to formulate the equivalents of equations (18) 
and (19) in the massless case. Thus, on one side, there is the transformation 

u_l()k)ah(hp)U()k)=[ E(p) ]1/2 e :i ah(P) (24) 

the superscript h standing for helicity; here h = + 1. The appearance of only 
(two) diagonal terms e ~: i~ instead of an entire matrix Iq, as in equation (19), 
is due to the helicity implicit in the massless operators a • (Weinberg, 
1964). 

On the other side we have to consider 

h~u~k(P)e~ah(p)  (25) 

e~ are the elements of the polarization tensor P; see eq. ( l lb) .  [In the 
massless case it is most convenient to use the operators ah(p), as already 
indicated by the diagonal form of equation (24).] Under the conditions of 
equations (20), using equation (22), the analogous form involving a (posi- 
tive) rotation X about x 

h =  

1 0 0 0 ~ 
0 1 X - X  

X 2 X z 
0 - X  1 - - -  

2 2 

X 2 X :  
0 - X  1 + 7  

2 2 

(26) 
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where X = lim x _, 0, ,, ~ ooX e~, and a rotation about the velocity axis, z, by the 
angle ~ we may then write 

p 

k-l~ke~ah(p)----~(Y+iX)ah(p)P=e"~U(k)ah(p)U-l(~),  e~ 

and thus finally 

1 +iX)ah(p)~  Xv_a rrZX)ah(p)U-t(~) (27) e~ ah(p)----~( Y _  = ~e • tJ~ 

?~ may now contain all three parameters. 
Although derived under the assumption that IPl equals P3 [see equations 

(20)], equation (27) is, on account of its covariance, immediately found to be 
valid for any p. The e~: then become 

k (p)=R-tkte~, eO=O e• 

and ?, is a transformation in the group E(2) which leaves p, E invariant 
(rather than P3 = IPl, E = P3). 

Equation (27) states that a rotation in " the frame of a massless 
spin-one particle" perpendicular to its velocity appears to the accordingly 
transformed observer as a (pure) gauge transformation of the potential of 
the particle field. Thus, the two global degrees of freedom lost when 
reaching helicity are regained in the form of gradients. 

Clearly, perpendicular rotations can be performed on every Fourier 
coefficient in equation (12), resulting in a pure gauge transformation of the 
general potentials ~+, _(x). 
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